1,098 research outputs found

    On the boundary treatment in spectral methods for hyperbolic systems

    Get PDF
    Spectral methods were successfully applied to the simulation of slow transients in gas transportation networks. Implicit time advancing techniques are naturally suggested by the nature of the problem. The correct treatment of the boundary conditions are clarified in order to avoid any stability restriction originated by the boundaries. The Beam and Warming and the Lerat schemes are unconditionally linearly stable when used with a Chebyshev pseudospectral method. Engineering accuracy for a gas transportation problem is achieved at Courant numbers up to 100

    Preconditioned Minimal Residual Methods for Chebyshev Spectral Caluclations

    Get PDF
    The problem of preconditioning the pseudospectral Chebyshev approximation of an elliptic operator is considered. The numerical sensitiveness to variations of the coefficients of the operator are investigated for two classes of preconditioning matrices: one arising from finite differences, the other from finite elements. The preconditioned system is solved by a conjugate gradient type method, and by a DuFort-Frankel method with dynamical parameters. The methods are compared on some test problems with the Richardson method and with the minimal residual Richardson method

    Homoclinic snaking of localized states in doubly diffusive convection

    Get PDF
    Numerical continuation is used to investigate stationary spatially localized states in two-dimensional thermosolutal convection in a plane horizontal layer with no-slip boundary conditions at top and bottom. Convectons in the form of 1-pulse and 2-pulse states of both odd and even parity exhibit homoclinic snaking in a common Rayleigh number regime. In contrast to similar states in binary fluid convection, odd parity convectons do not pump concentration horizontally. Stable but time-dependent localized structures are present for Rayleigh numbers below the snaking region for stationary convectons. The computations are carried out for (inverse) Lewis number \tau = 1/15 and Prandtl numbers Pr = 1 and Pr >> 1

    Free Form Deformation Techniques Applied to 3D Shape Optimization Problems

    Get PDF
    The purpose of this work is to analyse and study an efficient parametrization technique for a 3D shape optimization problem. After a brief review of the techniques and approaches already available in literature, we recall the Free Form Deformation parametrization, a technique which proved to be efficient and at the same time versatile, allowing to manage complex shapes even with few parameters. We tested and studied the FFD technique by establishing a path, from the geometry definition, to the method implementation, and finally to the simulation and to the optimization of the shape. In particular, we have studied a bulb and a rudder of a race sailing boat as model applications, where we have tested a complete procedure from Computer-Aided-Design to build the geometrical model to discretization and mesh generation

    Efficient and certified solution of parametrized one-way coupled problems through DEIM-based data projection across non-conforming interfaces

    Get PDF
    One of the major challenges of coupled problems is to manage nonconforming meshes at the interface between two models and/or domains, due to different numerical schemes or domain discretizations employed. Moreover, very often complex submodels depend on (e.g., physical or geometrical) parameters, thus making the repeated solutions of the coupled problem through high-fidelity, full-order models extremely expensive, if not unaffordable. In this paper, we propose a reduced order modeling (ROM) strategy to tackle parametrized one-way coupled problems made by a first, master model and a second, slave model; this latter depends on the former through Dirichlet interface conditions. We combine a reduced basis method, applied to each subproblem, with the discrete empirical interpolation method to efficiently interpolate or project Dirichlet data across either conforming or non-conforming meshes at the domains interface, building a low-dimensional representation of the overall coupled problem. The proposed technique is numerically verified by considering a series of test cases involving both steady and unsteady problems, after deriving a posteriori error estimates on the solution of the coupled problem in both cases. This work arises from the need to solve staggered cardiac electrophysiological models and represents the first step towards the setting of ROM techniques for the more general two-way Dirichlet-Neumann coupled problems solved with domain decomposition sub-structuring methods, when interface non-conformity is involved

    Optimal control in heterogeneous domain decomposition methods

    Get PDF
    Some new domain decomposition methods (DDM) based on optimal control approach are introduced for the coupling of first- and second-order equations on overlapping subdomains. Several cost functionals and control functions are proposed. Uniqueness and existence results are proved for the coupled problem and the convergence of iterative processes is analyze

    A continuous model for microtubule dynamics with catastrophe, rescue and nucleation processes

    Full text link
    Microtubules are a major component of the cytoskeleton distinguished by highly dynamic behavior both in vitro and in vivo. We propose a general mathematical model that accounts for the growth, catastrophe, rescue and nucleation processes in the polymerization of microtubules from tubulin dimers. Our model is an extension of various mathematical models developed earlier formulated in order to capture and unify the various aspects of tubulin polymerization including the dynamic instability, growth of microtubules to saturation, time-localized periods of nucleation and depolymerization as well as synchronized oscillations exhibited by microtubules under various experimental conditions. Our model, while attempting to use a minimal number of adjustable parameters, covers a broad range of behaviors and has predictive features discussed in the paper. We have analyzed the resultant behaviors of the microtubules changing each of the parameter values at a time and observing the emergence of various dynamical regimes.Comment: 25 pages, 12 figure

    A weighted reduced basis method for elliptic partial differential equations with random input data

    Get PDF
    In this work we propose and analyze a weighted reduced basis method to solve elliptic partial differential equations (PDEs) with random input data. The PDEs are first transformed into a weighted parametric elliptic problem depending on a finite number of parameters. Distinctive importance of the solution at different values of the parameters is taken into account by assigning different weights to the samples in the greedy sampling procedure. A priori convergence analysis is carried out by constructive approximation of the exact solution with respect to the weighted parameters. Numerical examples are provided for the assessment of the advantages of the proposed method over the reduced basis method and the stochastic collocation method in both univariate and multivariate stochastic problems. \ua9 2013 Society for Industrial and Applied Mathematics

    Reduced Basis Method for Parametrized Elliptic Optimal Control Problems

    Get PDF
    We propose a suitable model reduction paradigm-the certified reduced basis method (RB)-for the rapid and reliable solution of parametrized optimal control problems governed by partial differential equations. In particular, we develop the methodology for parametrized quadratic optimization problems with elliptic equations as a constraint and infinite-dimensional control variable. First, we recast the optimal control problem in the framework of saddle-point problems in order to take advantage of the already developed RB theory for Stokes-type problems. Then, the usual ingredients of the RB methodology are called into play: a Galerkin projection onto a low-dimensional space of basis functions properly selected by an adaptive procedure; an affine parametric dependence enabling one to perform competitive offline-online splitting in the computational procedure; and an efficient and rigorous a posteriori error estimate on the state, control, and adjoint variables as well as on the cost functional. Finally, we address some numerical tests that confirm our theoretical results and show the efficiency of the proposed technique. Copyright \ua9 by SIAM. Unauthorized reproduction of this article is prohibited
    • …
    corecore